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1. INTRODUCTION

This paper closely follows the recent studies by Elishako! and Rollot [1], Elishako! and
Candan [2] and Elishako! and Becquet [3]. It deals with the closed-form solution for beam
eigenvalues; buckling is considered in reference [1], while vibration is studied in references [2,
3]. References [2, 3] treat, respectively, pinned}pinned beams and sliding}pinned beams. The
paper by Elishako! and Candan [4] deals with three other boundary conditions:
pinned}clamped, clamped}free and clamped}clamped beam. Here, we complete these cases
with studying the vibration of a clamped}sliding beam. Note that sliding boundary condition
was studied by Bokaian [5]. Like our previous studies, this investigation is posed as an
inverse vibration problem. The "rst step is to postulate the mode shape of the vibrating beam,
which is represented by a polynomial function satisfying all boundary conditions. We ought
to note that in all the cases, we obtain the same expression of the natural frequency. As we
treat the inhomogeneous beam (Young's modulus and the density are given by polynomial
functions), the problem of the engineer is to accurately know the material density in order to
obtain the Young's modulus that corresponds to the selected mode shape.

In this paper, a clamped}sliding beam is studied. Moreover, we treat two speci"c cases,
which are associated with constant and linear variations of the density. The fundamental
natural frequency is given for all cases of variation of the material density.

2. FORMULATION OF THE PROBLEM

The dynamic behavior of a beam, with a constant cross-sectional area A and a constant
moment of inertia I, is given by

d2

dm2 CE (m)
d2w (m)

dm2 D!k¸ 4o (m)w (m)"0, (1)
1This paper is dedicated to the 65th Anniversary of Professor Yehuda Stavsky's birth.
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where E (m), w(m) and o (m) are, respectively, the Youngs modulus, the mode shape and the
density, ¸ is the length of the beam and k contains the fundamental natural frequency,

k"u2A/I. (2)

In equation (1) the modulus of elasticity and the material density are taken as functions of
the axial co-ordinate. The independent parameter of equation (1) is the non-dimensional
axial co-ordinate m"x/¸ (x being the dimensional co-ordinate). We assume that the
properties of the inhomogeneous beam are

o (m)"
m
+
i/0

a
i
mi , E (m)"

n
+
i/0

b
i
mi , w (m)"

p
+
i/0

w
i
mi . (3}5)

Consequently, m, n and p (the degrees of the polynomial functions E (m), w (m) and o (m)) are
linked by equation (1), i.e., n!m"4.

3. BOUNDARY CONDITIONS

We treat the case of a clamped}pinned beam. The boundary conditions read

w (0)"0, w@ (0)"0, w@ (1)"0, w @ (1)"0. (6}9)

The degree of the mode shape w (m), being a polynomial function, must be at least 4 for it to
satisfy all boundary conditions. The mode shape reads as

w (m)"m2!m3#1
4

m4 . (10)

4. SOLUTION OF THE DIFFERENTIAL EQUATION

Equation (1) is expanded by substituting equations (3)}(5). We obtain
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Equation (11) is valid for any m, so for each coe$cient in front of mi, 0)i)m#4, we have
a single equation. These read as

m0: 4b
2
!12b

1
#6b

0
"0, (12)

m1: 12b
3
!36b

2
#18b

1
"0 (13)
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m2: 24b
4
!72b

3
#36b

2
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0
"0, (14)

m3: 40b
5
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3
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0
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1
)"0 (15)

F
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for 4)i)m#2, (16)

F
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4
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mm`4: 3 (m#5) (m#6)b
m`4

!1
4
k¸4a

m
"0. (18)

We obtained a system of m#5 equations (0,2 i,2,m#4); equation (16) is a recursive
equation. We are looking for the unknown k. Thus, coe$cients a

i
and b

i
are linked by other

relations, given at a later stage. These relations are valid for the general case for m*2. The
case m)1 is given in section 5. The general case is treated in section 6..

5. CASE OF THE UNIFORM AND LINEAR DENSITIES

5.1. UNIFORM DENSITY

E (m) and o (m) are given by

o (m)"a
0
, E (m)"

4
+
*/0

b
i
mi . (19)

Equation (1), with the above expressions of E (m) and o (m), leads to
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1
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1
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(22}24)

We have six unknowns, b
0
, b

1
, b

2
, b

3
, b

4
and k, and "ve equations, given by equations

(20)}(24). Thus, b
0
, b

1
, b

2
, b

3
and k are calculated in terms of b

4
. These coe$cients and k are

obtained as:
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From equation (29), the fundamental natural frequency is derived as

u2"360Ib
4
/A¸4a

0
. (30)

Figure 1 represents E (m)/b
4

for the speci"c case a
0
"1.



Figure 1. Variation of E(m)/b
4
, m3[0; 1], for constant density.
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5.2. LINEAR DENSITY

In this second case, E (m) and o (m) are

o (m)"a
0
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1
m, E (m)"
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mi . (31)

Equation (1), valid for every m, imposes

4b
2
!12b

1
#6b

0
"0, !36b

2
#12b

3
#18b

1
"0, (32, 33)

36b
2
!72b

3
#24b

4
!k¸4a

0
"0, 60b

3
!120b

4
#40b

5
#k¸4 (a

0
!a

1
)"0,

90b
4
!180b

5
#k¸4 (a

1
!1

4
a
0
)"0, 126b

5
!1

4
k¸4a

1
"0. (34}37)

The six equations in system (32)}(37) are a system of seven unknowns. Hence, b
5

is taken as
an arbitrary coe$cient. The unknowns b
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and k read as
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leading to the natural frequency:

u2"504Ib
5
/A¸4a

1
. (44)

The dependence E (m)/b
5

with m is shown in Figure 2 for the particular case o (m)"1#2m,
a
0
"1, a

2
"1.



Figure 2. Variation of E (m)/b
5
, m3[0; 1], for linear variation of the density.
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6. GENERAL CASE: COMPATIBILITY CONDITION

From equations (12)}(18), we calculate k. Obviously, these di!erent expressions of k are
equal to each other. Thus

k"12 (2b
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0
, (45)
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Let us assume that the material density coe$cients a
i
are known. The above expressions of

k allow us to obtain the material Young's modulus coe$cients b
i
.

As material density coe$cients are known, equations (45)}(49) lead to the knowledge of
coe$cients b

i
(i"2,2,m#4). The coe$cients b

0
and b

1
are calculated by equations (12)

and (13).
Yet, k is also unknown: Thus, we have m#5 equations (equations (12), (13), (45)}(49))

with m#6 unknowns (b
i
, i"0,2,m#4 and k). We need to "x one of the coe$cients b

j
in

order to compute the other coe$cients b
i
, iOj and k. Here, we choose b

m`4
to be speci"ed.

Equation (48) yields
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Equation (47), with i"m#2, results in
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With equation (47), we have the general expression of b
i
, for 4)i)m#1. Hence,
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Equation (46) yields

b
3
"!2

6(a
0
!a

1
)b

6
#(14a

1
#4a

2
!17a

0
)b

5
#(3a

1
!12a

2
#6a

0
)b

4
3 (!4a

1
#4a

2
#a

0
)

. (53)

Equation (45) results in
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From equations (13) and (12), we obtain
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Equation (49) leads to the natural frequency u,

u2"12 (m#5) (m#6) Ib
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/A¸4a
m
. (56)

In Figure 3, we present the dependence E (m)/b
16

.

Figure 3. Variation of E (m)/b
16

, m3[0; 1], o (m)"+15
i/0iO4, iO12
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7. CONCLUSION

It is remarkable that the expression for the natural frequency obtained within the present
formulation for the clamped}sliding beam coincides with its counterparts irrespective of the
boundary conditions. It should be stressed, however, that the sti!ness coe$cients depend
upon boundary condition. This implies that for a given material density expression, in order
for beams under di+ering boundary conditions to have the same frequency, they must have
di+ering expressions for sti!ness. This feature is in line with one's anticipation, since even
uniform beams with di!erent boundary conditions may possess the same natural frequency
if the sti!ness is properly &adjusted'. The present formulation screens, as it were, the beams
that have the same frequencies under di!ering boundary conditions.
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